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Abstract
Ovarian cancer (OC) is a major global health problem. The main treatments are surgery and chemoradiotherapy. A drawback 
of the latter is that repeated treatments are likely to lead to cancer cells developing resistance to the drug, resulting in recur-
rence, development of metastases, and poor prognosis for patients. Consequently, there is interest in combining chemoradio-
therapy with treatment using active components extracted from natural products. One such component is resveratrol (RVT), 
which is a natural anti-tumor ingredient extracted from plants. Although there are many reviews on the biological activity of 
RVT, only a few studies have been performed to investigate the diversity of protein binding of RVT with OC and the applica-
tion of various novel drug formulations containing RVT to treat OC. The review presented here may provide some ideas for 
the prevention and treatment of OC.
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Introduction
Ovarian cancer (OC) has been described as a “silent killer”. Onset 
is often hidden, and in many patients the disease has reached an 
advanced stage by the time it is discovered.1 In 2024, the annual 
incidence rate of OC was estimated to be approximately 11.2 cases 
per 100,000 individuals, while the mortality rate was approximate-
ly 7.6 cases per 100,000 individuals.2

There are two main histological subtypes of OC, namely epi-
thelial OC and non-epithelial OC. Epithelial OC is the most com-
mon subtype and includes serous OC, mucinous OC, and clear cell 
carcinoma, and accounts for 90% of all cases.2 OC does not al-

ways begin in the ovary, and in many cases begins in the fallopian 
tubes.3 Especially due to the anatomical position of the ovary in the 
retroperitoneum, an effective screening strategy does not exist for 
detecting OC, and most cases are identified via breast cancer 1 or 
breast cancer 2 germline mutations or other limited genes associ-
ated with high risk of OC,4 which is the main reason why many 
women have reached Stage III when they are diagnosed.5

After surgical resection of the OC lesion, radiotherapy and 
chemotherapy treatments are routinely given. Radiotherapy is a 
local treatment, the aim of which is to deliver as much radiation 
as possible to the tumor. However, because radiation has low se-
lectivity for cells, to minimize damage to adjacent healthy cells, 
only body parts needing treatment are exposed to radiation. On the 
other hand, chemotherapy drugs target cancer cells in the human 
body by oral administration or injection, so that the whole body is 
exposed to anti-cancer drugs. Unfortunately, cancer cells typically 
become resistant to chemotherapeutic drugs such as paclitaxel and 
platinum compounds,6 and the efficacy of chemotherapy is usually 
not satisfactory in the later stages of the disease.7 The poor prog-
nosis of patients and the decline in overall survival rate are major 
unsolved clinical needs in the treatment of patients with OC.

Anti-cancer treatments developed from natural products are at-
tracting significant attention because of their convenience to source 
and good safety. Resveratrol (RVT) is a potential natural anticancer 
treatment without toxicity or adverse effects and is of particular in-
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terest. If natural products can be used to improve the efficacy of ra-
diotherapy and the efficacy and long-term potency of chemotherapy, 
this will be of major benefit for increasing survival times for patients.

RVT (3,4′,5-trihydroxy-trans-stilbene) is a natural compound 
that is found in many plants, such as grapes, peanuts, blueberries, 
etc. It has been shown to have an inhibitory effect on many types 
of cancer cells, including lung cancer,8 prostate cancer,9 OC,10 
and oral cancer.11 The structure of RVT is based on 3,4′,5-trihy-
droxystilbene, known as stilbene, which consists of two phenolic 
rings connected by a styrene double bond and exists in both cis and 
trans forms, which are both functional.12 Trans-RVT can undergo 
isomerization to cis-RVT when exposed to solar or artificial light 
or UV radiation.13 The mechanism of action of RVT in the treat-
ment of cancer has been described by Ren et al.,14 among others, 
leading to new ideas for research. RVT has both immunomodula-
tory and anticancer properties. In particular, its antioxidant activity 
and ability to inhibit enzymes may contribute to anti-inflamma-
tory properties. Furthermore, studies have shown that RVT can 
stimulate autophagy and activate molecules related to vascular 
protection, induce the expression of KLF transcription factor 4 
and NaVβ3, and subsequently activate signaling pathways associ-
ated with endothelial cells, thereby contributing to vascular pro-
tection.15 By interfering with signaling pathways associated with 
cellular microenvironment components such as macrophages and 
fibroblasts, RVT can also enhance its anti-tumor effect.16 RVT can 
also act as a nuclear transcription factor-κB (NF-κB) antagonist, 
inhibiting RANKL-induced NF-κB signaling, thereby reducing 
NF-κB activity. It modulates a specific gene expression profile, 
suppresses excessive tumor proliferation, and consequently dimin-
ishes or eliminates apoptosis resistance.17

In this review, the latest developments in using RVT to treat 
OC will be presented, with particular focus on its role in augment-
ing radiotherapy and chemotherapy treatments. The application of 
RVT to treat OC has been expanded by the use of a variety of en-
capsulated forms of delivery, and it is expected that RVT will have 
a broad range of applications in the future.

Structural properties of RVT and its binding to OC-related 
target proteins
RVT (3,4′,5-trihydroxy-trans-stilbene) is a compound with a non-
flavonoid polyphenol structure, as shown in Figure 1. Near-plane 
trans-R forms a conjugate network with relatively poor rigidity and 
flexibility, and non-plane cis-R forms a more flexible structure that 
allows different interactions. Energy decomposition analysis has 
shown that trans-R is more potent than cis-R, and so the trans iso-
mer is the most widely studied chemical form.18 Important for can-
cer treatment, the hydroxyl position of polyphenols has an impor-
tant influence on its interaction with enzymes, antioxidant activity, 
stability, and enzyme activity,19 because phenolic hydroxyl groups 
easily interact with amino acid residues of target proteins in vivo 
through hydrogen bonds, hydrophobic interactions, electrostatic 
interactions, π-π superposition, and cation-π interactions.20–22 The 
complementarity of these local structures means that the RVT-
target interaction and binding are highly specific, which is impor-
tant for targeting in anti-cancer treatments. We searched the Pub-
Med, ScienceDirect, Google Scholar, Scopus, ISI Web of Science, 
ProQuest, and Embase databases from 2001 to 2025 using relevant 
keywords, including but not limited to “ovarian cancer signaling 
pathways”, “resveratrol target proteins”, “resveratrol AND ovarian 
cancer)”, “sirtuin 1 (SIRT1) ovarian cancer”, “estrogen receptor al-
pha (ERα) resveratrol binding”, “peroxisome proliferator-activated 

receptor (PPAR-γ) ovarian cancer”, and “phospholipase A2 (PLA2) 
resveratrol”. The selection process employed strict inclusion cri-
teria requiring targets to have both demonstrated relevance to OC 
progression and available structural data in the PDB (https://www.
rcsb.org/). Through this approach, we identified several key targets 
involved in OC. Further analysis was conducted subsequently. The 
selection of PDB entries was based on stringent criteria, prioritizing 
structures with high resolution (typically < 2.5 Å), determined by 
X-ray crystallography, and preferably in complex with a relevant 
substrate or inhibitor to ensure the biological relevance of the active-
site conformation, since consideration of the crystal structure is the 
most helpful way of understanding the binding pattern at the atomic 
level. Using the PubChem database (https://pubchem.ncbi.nlm.nih.
gov/), the 3D structure of RVT was downloaded as the ligand.23 Pro-
tein structures were prepared for docking using the protein prepara-
tion workflow via AutoDock Vina 1.1.2. This involved the addition 
of hydrogen atoms, assignment of partial charges, and removal of 
native ligands and water molecules. Crucially, the protonation states 
of key ionizable residues (e.g., aspartic acid, glutamic acid, and his-
tidine) were carefully evaluated and adjusted to their most probable 
states at physiological pH to ensure an accurate representation of the 
binding interface.

The docking calculations were carried out using AutoDock 
Vina, which employed a rapid grid-based method for energy evalu-
ation and an efficient algorithm for searching the conformational 
space of the ligand. The search space (grid box) was explicitly de-
fined to encompass the known active site of each target protein. 
The resulting docking poses were clustered and ranked based on 
their calculated binding affinity (kcal/mol).

The predicted binding energies for RVT against each protein 
target are summarized in Table 1, and the molecular docking dia-
grams are provided in Figure 2.

Binding of RVT to SIRT 1 protein (PDB ID:5BTR)
SIRT1 functions as an NAD+-dependent deacetylase, exerting its 

Fig. 1. Structure of RVT. (a) 2D structure of RVT; (b) 3D structure of RVT. 
RVT, resveratrol.
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regulatory influence through deacetylation of downstream pro-
teins. It can delay cell aging, helping cells resist external stress and 
improving metabolism.24 The expression of SIRT1 has been shown 
to be elevated in mammalian follicles, where it is capable of modu-
lating oestrogenic function.25 SIRT1 also controls the secretion of 
tumor-promoting exosomes during cancer invasion and is overex-
pressed in patients with OC.26 RVT is a polyphenol compound that 
can stimulate SIRT1 production.27 A positive correlation between 
SIRT1 expression level and overall survival in OC has been re-
ported.28 Furthermore, it is predicted that RVT stimulates SIRT1 
expression in follicular cells.29 The combination of melatonin 
and RVT has been demonstrated to exert a neuroprotective effect 
against amyloid-related toxicity by stimulating SIRT1 activity.30 
Studies in vivo and in vitro show that SIRT1 is a potential target for 
treating diseases.31,32 Besides the catalytic domain of SIRT1, RVT 
also requires the presence of the N-terminal domain, which forms 
hydrogen bonds with Asp298 through the hydroquinone ring and 
hydrophobic interactions with the Gln294 receptor residue, while 
the 4-hydroxyphenyl ring forms an important hydrogen bond with 
Lys444 and a hydrophobic bond with Thr209 of the receptor mol-
ecule.33 It can be posited that the formation of these bonds may 
provide molecular modeling data for RVT-stimulated SIRT1 ex-
pression elevation.

Binding of RVT to PLA2 protein (PDB ID:4QER)
PLA2 is a hydrolase that can catalyze the 2-acyl group on a 
phospholipid glycerol molecule and is also a rate-limiting en-
zyme involved in the production of bioactive substances such 
as arachidonic acid, prostaglandin, and platelet-activating fac-
tor. The lipid medium produced plays a key role in membrane 
channel activation, information transmission, hemodynamics, 
and pathophysiology during inflammation and tissue injury, as 
well as in regulating metabolism inside and outside cells.34 The 
PLA2 superfamily comprises a series of hydrolases that facili-
tate the release of membrane fatty acids, resulting in the pro-
duction of arachidonic acid and lysophospholipids. This process 
culminates in the generation of biologically active lipid signaling 
molecules. The PLA2 enzyme plays an important role in OC in 
the downregulation of phosphatidylethanolamine and ether phos-
phatidylcholine, and as a rate-limiting enzyme in phospholipid 
hydrolysis, it exhibits specific chronic inflammation and distur-
bances in homeostasis, thus making it a potential target for can-
cer therapeutic drug development. Inhibition of iPLA2β to im-
pede ovarian carcinogenesis may represent a future direction for 
lipid metabolism regulation in cancer therapy.35 RVT has been 
demonstrated to induce changes in the membrane morphology 
of HepG2 cells, which is concomitant with a decline in PLA2G2 
expression.36 PLA2 is expressed in OC effusion,37 and studies 
have shown that targeting lipogenesis with the metabolic inhibi-
tor PFK158 attenuates the expression of PLA2 subtypes in an 
autophagy-dependent manner, which can offset the progression 
of OC and suggests that great potential exists for using targeted 
phospholipases in the treatment of OC.38 RVT affects the struc-
ture and stability of the PLA2 enzyme through hydrophobic and 
electrostatic interactions.39 In the structure of RVT, due to the 
action of hydroxyl groups, the 4-hydroxystyryl moiety with rela-
tively low polarity is wrapped in the buried environment of the 
substrate-binding gap, and the hydroxyl groups generate hydro-
gen bond interactions with multiple amino acid residues, while 

Table 1.  Molecular docking results of RVT with target proteins

Target protein PDB ID Binding energy Binding affinity

SIRT1 5BTR −8.3 Strong

PLA2 4QER −6.9 Strong

E2 4PP6 −7.8 Strong

PPAR-γ 4JAZ −8.0 Strong

Binding energy < −5.0 kJ/mol indicates strong binding ability (highlighted in bold). 
PDB, Protein Data Bank; PLA2, phospholipase A2; PPAR-γ, peroxisome proliferator-
activated receptor gamma; RVT, resveratrol; SIRT, sirtuin 1.

Fig. 2. Binding of RVT to high-expression proteins in ovarian tumors. (a) Binding of RVT to SIRT1 protein; (b) Binding of RVT to PLA2 protein; (c) Binding of 
RVT to E2 protein; (d) Binding of RVT to PPAR-γ protein. PLA2, phospholipase A2; PPAR-γ, peroxisome proliferator-activated receptor gamma; RVT, resvera-
trol; SIRT1, sirtuin 1.
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the m-hydroquinone ring with relatively strong electronegativity 
is close to the surface of PLA2. Two important hydrophobic in-
teractions are formed between RVT and nearby Ile19 and Phe5, 
and all RVT-binding residues are cyclic or alpha-helical.40 The 
existence of these chemical bonds indicates that RVT can bind 
closely to the highly expressed proteins in the development of 
OC after entering the body, and these proteins may become target 
proteins for the treatment of OC in the future.

Binding of RVT to E2 (estrogen protein, PDB ID:4PP6)
The estrogen receptor alpha (E2) protein is highly expressed in 
epithelial OC and is associated with poor prognosis in patients 
with OC.41 A large-scale study that included 2,933 patients with 
OC found that in the high-grade serous, low-grade serous, and 
endometrioid subtypes of epithelial OC, the expression of estro-
gen receptor alpha was significantly higher than that in the other 
subtypes. The positive rates of E2 (nuclear staining ≥ 50%) were 
60%, 71%, and 60%, respectively.42 In particular, E2 stimula-
tion enhances the influx of Ca2+ and promotes the proliferation 
and invasion of OC cells.43 E2 promotes the proliferation of epi-
thelial ovarian cancer cells by upregulating genes related to pro-
liferation, such as c-fos and c-myc. Furthermore, it can promote 
the migration and epithelial-mesenchymal transition of epithelial 
ovarian cancer cells by reducing the expression of E-cadherin and 
increasing the expression of Snail and Slug.44 RVT has a weak 
estrogen-like effect, which allows it to bind to estrogen receptors 
and exert a biological effect similar to estrogen.45 A simulation us-
ing molecular dynamics showed that RVT is a selective estrogen 
receptor modulator, and its actual effect is highly dependent on 
the cellular environment and whether co-regulatory proteins are 
present.46 The m-hydroquinone moiety present in RVT and Phe404 
can form a π–π conjugated structure, enabling RVT to more easily 
enter the cavity of the estrogen protein and form hydrogen bonds 
with Glu353 and Leu387, while the 4-hydroxystyryl group with 
relatively low electronegativity can interact with His524.

Binding of RVT to PPAR-γ protein (PDB ID:4JAZ)
PPAR-γ is a ligand-activated transcription factor. There are three 
isoforms of human PPAR, namely PPAR-α, PPAR-β/δ, and 
PPAR-γ, and PPAR-γ is the most widely studied subtype. PPAR-γ 
consists of 11 to 13 α-helices sandwiched between three layers of 
antiparallel helices and a four-stranded β-sheet that folds into a 
large hydrophobic cavity, which facilitates the binding of ligands 
to receptors, and is expressed in a large number of epithelial ovari-
an tumors and cell lines.47,48 PPAR-γ is a key factor in macrophage 
differentiation and interacts with CCAAT/enhancer-binding pro-
tein β, a transcription factor essential for activating the immune 
system. This implies that PPAR-γ may serve as a potential thera-
peutic target for OC.49 In the later stage of OC treatment, cisplatin 
can increase the content of PPAR-γ in ovarian tissue and enhance 
ovarian toxicity.50 RVT activates PPAR-γ, which in turn inhibits 
the expression of Cyclin D1, causing cancer cells to arrest in the 
G1 phase and reducing their ability to divide.51 We modeled the 
specific binding site using molecular docking to demonstrate that 
RVT is bound to the deep cavity of one of the monomeric units 
of the PPAR-γ dimer structure, rather than to its surface.52 Thus, 
the stilbene moiety has unique conjugated structural characteris-
tics, whereby the 4-hydroxyphenyl ring forms a hydrophobic in-
teraction with Phe264 and Ile281, and the hydrogen bond energy 
between the m-hydroquinone ring and Ser342 causes partial dis-
placement of some residues in the PPAR-γ domain and tight bind-
ing with RVT.

The specific roles of RVT in the treatment of OC

Anti-inflammatory
Most often, it is chronic inflammation that is the intrinsic driving 
force behind the transformation of precancerous lesions into malig-
nant tumors.53,54 In particular, abnormal secretion and expression 
of inflammatory factors are key to tumorigenesis.55 Lipopolysac-
charide (LPS), the basic glycolipid component of Gram-negative 
bacterial endotoxin, can cause inflammatory reactions in the 
host.56 It can reduce inflammation by inhibiting the production and 
release of the pro-inflammatory cytokine interleukin (IL)-1β and 
pyroptosis (an inflammatory form of cell death) in macrophages.57 
RVT has the potential to reduce the expression of such inflamma-
tory mediators, including prostaglandin E2 and BV-2, or mono-
cyte LPS-stimulated monocyte chemoattractant protein-1.58,59 In 
addition, LPS-stimulated expression of toll-like receptor 4 was 
decreased after RVT pretreatment.60 RVT could inhibit the expres-
sion of inducible nitric oxide synthase and IL-6 in LPS-treated 
RAW264.7 cells in a dose-dependent manner.61 IL is a member of 
the classical inflammatory factor family, and remarkably higher 
levels of IL-6 and vascular endothelial growth factor-A were re-
ported in ascites of patients with epithelial OC compared with a 
control group.62 Possibly, RVT could inhibit the migration of OC 
cells induced by the pro-inflammatory factor IL-6 and regulate au-
tophagy,63 and thus control the inflammatory lesions of ovarian 
tumors by inhibiting inflammatory factors. Furthermore, the ubiq-
uitous nuclear transcription factor NF-κB can regulate the expres-
sion of many inflammatory response regulatory genes, and activa-
tion of the NF-κB pathway can lead to LPS-stimulated expression 
of inflammatory cytokines such as IL-1, IL-6, IL-10, and tumor 
necrosis factor.64 In addition, the ability of RVT to down-regulate 
NF-κB activation in macrophages is higher than that of naringenin 
and naringin.65 RVT demonstrated an anti-inflammatory effect via 
SIRT-1 activation,66 and the binding of RVT to SIRT-1 enhanced 
its attachment to a RelA/p65 substrate,67 thereby activating leuko-
cyte and pro-inflammatory cytokine pathways.68

Antioxidation
Oxidative stress is defined as a relative excess of reactive oxygen 
species (ROS) and typically accompanies excessive proliferation 
of tumor cells.69 In particular, persistent oxidative stress can cause 
DNA damage and gene mutation, leading to irreversible imbalance 
of ROS in the body and occurrence of OC.70 ROS play a signifi-
cant role in platinum resistance in OC by activating various cellular 
pathways and targets. ROS can both promote and inhibit cell death, 
creating a complex interplay in response to platinum-based chem-
otherapy.71 RVT extracted from plants such as grapes is a natural 
antioxidant and has been shown to play a significant role in antioxi-
dant activity,72 with structurally related hydroxyl groups involved in 
mechanisms that reduce ROS and free radicals as well as increase 
endogenous antioxidant biosynthesis. RVT can kill OC stem cells 
by up-regulating ROS levels in cells, and ROS can damage the self-
renewal ability of OC stem cells surviving RVT treatment.73 Ibrahim 
et al.74 demonstrated that RVT had a potential protective effect on 
cisplatin-induced ovarian and uterine toxicity in female rats, mainly 
by reducing oxidative stress, inflammation, and apoptosis to inhibit 
cisplatin-induced toxicity.High-valent selenium nanodrugs loaded 
with RVT can stimulate ROS overproduction, which significantly 
induces mitochondrial dysfunction and promotes caspase-activated 
cell apoptosis and migration, and inhibits OC development.75 RVT 
exerts its antioxidant properties mainly through a variety of signal-
ing pathways that activate antioxidant enzymes.76

https://doi.org/10.14218/FIM.2025.00025
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Antiproliferation and cell cycle arrest
The regulatory mechanism of the cell cycle mainly depends upon 
compounds such as cyclins, cyclin-dependent kinases, and cyclin-
dependent kinase inhibitors,77 and uncontrolled proliferation of 
cancer cells is largely due to the abnormal activity of cyclins.78 
Gene expression analysis using three different types of cell lines 
and clinical samples found that cyclin A1 was persistently overex-
pressed in recurrent and drug-resistant ovaries, and suggested that 
cell cycle inhibitors may be potential drugs for the treatment of 
cancer. RVT down-regulated the phosphorylation of protein kinase 
B (AKT) and GSK-3β at Ser9 in a concentration-dependent man-
ner and reduced extracellular signal-regulated kinase 1/2 in OC 
cells, thereby inhibiting the expression of cyclin D1.79 Derivatives 
of RVT enhance the effectiveness of cisplatin in treating OC by 
improving its ability to reduce cell viability, inducing apoptosis, as 
well as arresting the cell cycle, leading to a greater proportion of 
cells in the sub-G1 phase.80 RVT induces both cell cycle arrest and 
apoptosis in ovarian adenocarcinoma SKOV-3 cells by activating 
the p38 mitogen-activated protein kinase pathway and inhibiting 
the AKT pathway.81 Zhong et al.82 studied the inhibitory effect of 
RVT on OC cells using two human OC cell lines, OVCAR-3 and 
CAOV-3, and found that RVT-treated human OC cells had signifi-
cant accumulation in the G1 phase and an increased apoptosis frac-
tion, and were significantly blocked in the S phase. G2/M phase 
block played a significant role in enhancing the sensitivity of OC 
cells to immunotherapy.83 RVT could not only inhibit the growth 
of OC but also play a role in drug-resistant OC.

In the structure of RVT, the presence of 4′-OH and stereoiso-
mers in the trans isomer (4-hydroxystyryl moiety) is necessary to 
inhibit cell proliferation.84 In particular, RVT was able to inhibit the 
proliferation of SKOV-3 cells by inhibiting the glycolysis-targeted 
AMPK/mTOR pathway and inhibit the growth of OC and liver 
metastasis in xenograft mouse models in vivo.85 Prostaglandins are 
the products of cyclooxygenase (COX-2) acting on arachidonic 
acid and have been shown to stimulate cell proliferation, promote 
angiogenesis, and inhibit apoptosis in cancer.86,87 RVT can inhibit 
the progression of tumors by directly blocking COX-2 activity.88 It 
has also been reported that RVT has another key effect on COX-2 
in OC cells, namely induction of anti-proliferation of tumor cells 
by activating extracellular signal-regulated kinase 1/2-dependent 
COX-2 nuclear accumulation and p53-dependent apoptosis activa-
tion/phosphorylation.89 The specific possible mechanisms of RVT 
in OC are shown in Figure 3.

Regulation of autophagy in OC cells
Autophagy is an evolutionarily conserved catabolic process in 
mammalian cells that participates in the regulation of cellular ho-
meostasis by engulfing endogenous (e.g., organelles) and exog-
enous (e.g., pathogens) materials to form double-membrane au-
tophagosomes and degrading these substrates after fusion of the 
autophagosome with the lysosome.90 Tumor cells rely more on 
autophagy for survival than normal cells.

Autophagy has a two-sided role in tumor cells, as shown in Fig-
ure 4. On the one hand, autophagy can prevent chronic tissue dam-
age and inhibit the accumulation of oncogenic protein aggregates 
by controlling organelles in the early stage of tumor formation, 
thereby achieving the effects of inhibiting tumor growth, interfer-
ing with tumor occurrence, and maintaining the stability of the 
microenvironment.91,92 On the other hand, autophagy at the ad-
vanced stage of tumor development can serve as a mechanism for 
cell survival, protection, and defense, maintaining mitochondrial 
function in cancer cells and enhancing cellular stress capacity, 

thereby maintaining tumor metabolism, promoting tumor growth, 
and increasing tumor formation, leading to tumor resistance.73,93,94 
Autophagy thus contributes to macromolecular renewal, cell ho-
meostasis, and survival, and represents a pathway that can be used 
for anticancer therapy,95 as shown in Figure 4. The potential role of 
autophagy in tumors is complex and relevant to both tumor induc-
tion and inhibition.

Autophagy is essential for quiescent OC spherical cells to re-
enter the cell cycle.96 LC3 has been best investigated and charac-
terized as an autophagosome marker in mammalian cells.97 Au-
tophagy was found to be enhanced with Beclin-1 upregulation and 
LC3 enzymatic cleavage in RVT-treated OC cells.98 In particular, 
RVT was able to recover from autophagy and promote apoptosis 
by inhibiting the Hh pathway in response to the effects of plati-
num chemotherapy drugs on OC cells.99 The combination of RVT 
and cisplatin could reduce the phosphorylation level of AKT and 
thus induce autophagy.100 In other studies, it has been shown that 
RVT can significantly induce autophagy and promote apoptosis 
of OC cells.101 Autophagy is a mechanism of RVT in regulating 
the microenvironment of OC.102 Although RVT-induced cell death 
can trigger apoptosis (another pathway of cell death), autophagy 
is also activated, and gene products regulating autophagy can play 
the role of tumor suppressor genes. Studies carried out in this labo-
ratory have shown that RVT can inhibit the proliferation of OC 
cells by regulating autophagy (see Fig. 3 for more details on the 
roles and targets of RVT).

Application of new preparations of RVT in OC

Application of novel preparations in targeted OC
Although the therapeutic effect of RVT on OC is supported by 
many in vitro experiments,103,104 poor bioavailability and water 
solubility hinder the development of studies to investigate the 
clinical efficacy of RVT. Epithelial OC cannot be accurately di-
agnosed by imaging techniques such as magnetic resonance imag-
ing (MRI).105 Therefore, it is hoped that by constructing delivery 
systems that contain multiple components, they can not only tar-
get and treat the tumor with reduced toxic effects, but also sup-
port the development of new methods for early detection of OC 
lesions. Biomedical imaging can easily combine targeted cancer 
treatment,106 electron modulation and energy conversion of the 
nanocatalyst under X-ray irradiation can greatly improve the ef-
ficiency of catalytic radiosensitization and further improve clinical 
curative effects,107 and can also achieve therapeutic purposes by 
enhancing the permeability and retention effect and actively target-
ing accumulation in tumors. Intelligent response drug administra-
tion systems have been developed by constructing a gold nanodot–
paclitaxel–polylysine (AuNDs-PTX-PLL) core-shell integrated 
diagnosis and treatment nanosystem, which not only solved the 
problem of poor water solubility and drug resistance of paclitaxel, 
but also enabled the nanogold particles to be used for real-time 
tracking and auxiliary diagnosis of tumors through multimodal im-
aging such as fluorescence and CT.108 Previous studies have dem-
onstrated that chitosan/PEG nanoparticle-embedded oleogels can 
significantly enhance the bioavailability and antioxidant capac-
ity of RVT.109 Novel nanoformulations for RVT delivery include 
polymer nanoparticles, liposomes, micelles, metal nanoparticles, 
and solid lipid nanoparticles. Imaging probes may be included in 
the nanoparticles, allowing the adverse effects of drugs to be pre-
dicted by providing data on potential non-target aggregation sites 
in healthy tissue.110
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Fig. 4. Role of autophagy in tumors, by Figdraw. 

Fig. 3. Mechanisms of RVT in the treatment of OC, by Figdraw. ATG, autophagy-related gene/protein; Bax, Bcl2-associated X protein; Bcl2, B-cell lymphoma 
2; BECN1, Beclin-1; CDK, cyclin-dependent kinase; IL6, interleukin-6; LC3I, microtubule-associated protein 1A/1B-light chain 3-I; LC3II, microtubule-associ-
ated protein 1A/1B-light chain 3-II; LPS, lipopolysaccharide; OC, ovarian cancer; P53, cellular tumor antigen P53; pAKT, phosphorylated protein kinase B; 
ROS, reactive oxygen species; RVT, resveratrol.
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New dosage forms of RVT for the treatment of OC

Formulations containing RVT alone
Nanoconjugation can enhance the antioxidant properties of RVT. 
Compared with the free drug, the bioconjugated drug can improve 
effective drug loading and is more effective in killing cancer cells. 
Researchers synthesized RVT-loaded zinc oxide nanoparticles, and 
in the human OC cell line PA1, RSV-ZnO nanoconjugates could 
induce cell apoptosis by enhancing intracellular ROS levels and 
mitochondrial membrane depolarization. Moreover, RSV-ZnO 
nanoconjugates had a stronger anticancer effect than free RSV.111 
RVT-loaded bovine serum albumin nanoparticles induced apopto-
sis in SKOV-3 OC cells through the AIF apoptotic pathway, which 
was considered to be an alternative to the caspase-dependent apo-
ptotic pathway.112

As a novel delivery system in the treatment of OC, arginine-
glycine-aspartic acid-conjugated RVT human serum albumin 
nanoparticles showed a higher cell uptake rate and cell inhibi-
tion rate in a model of OC as compared with a control group, and 
demonstrated good tumor enrichment characteristics and signifi-
cant tumor inhibition differences in an in vivo experiment.113 The 
RVT-conjugated gold nanoparticle system exhibits remarkable ef-
ficacy in suppressing hydrogen peroxide-induced oxidative stress, 
including inhibition of ROS generation, reduction of malondial-
dehyde production, and prevention of glutathione depletion.114 In 
addition, researchers have also developed RVT liposomes as a new 
therapeutic platform for magnetic resonance imaging-guided tar-
geted therapy for Parkinson’s disease.115

Combination with preparations loaded with RVT
Combining the treatment effects of different therapeutic drugs is 
an interesting topic in the field of OC treatment. This so-called 
combination therapy can reduce adverse effects and prevent the 
development of drug resistance. For example, co-administration 
of RVT and curcumin in a polymer micelle can reduce the car-

diotoxicity of doxorubicin hydrochloride by reducing apoptosis 
and increases in ROS, while at the same time improving the ef-
ficacy of doxorubicin hydrochloride against OC cells.116 Similarly, 
polymer micelle co-administration of quercetin/RVT and RVT/
curcumin can enhance drug targeting. In particular, compared with 
using adriamycin alone, copolymerized micelles combined with 
adriamycin reduced tumor size and the extent of heart damage 
in mice,117 and had the ability to promote apoptosis of OC cells. 
RVT- and curcumin-loaded core-shell nanoparticles demonstrated 
enhanced cellular uptake and significantly reduced viability in OC 
cells.118 Researchers in this laboratory are developing nanoparti-
cles loaded with RVT that will be used to guide targeted therapy 
for OC using MRI and other imaging techniques.

The sensitization effect of RVT on OC treatment
The immediate remission rate of advanced OC can reach more 
than 80% after receiving chemotherapy drugs. However, most pa-
tients relapse within two to three years, and almost all relapsed OC 
is resistant to chemotherapy,119,120 which is the main reason for the 
high mortality rate of patients with advanced OC.121 The combina-
tion of natural compounds and chemotherapy drugs may be able 
to produce additive/synergistic effects, improve drug activity, and 
reduce adverse effects (please see Table 2 for specific drugs and 
mechanisms of action).108,112,113,117,122–130 The drug or combination 
drug system can be designed to have nano- or micron-scale dimen-
sions and be released into tumors to affect the cellular microenvi-
ronment.131 Research focusing on a phase-change material-gated 
Ti3C2Tx nanosheet as a photothermal-responsive drug delivery 
system for loading natural RVT has been conducted, with the goal 
of achieving synergistic radiosensitization in a precisely controlled 
manner. This system demonstrates remarkable capabilities. It sig-
nificantly boosts the biophysical diffusion of RVT within physi-
ological solutions, ensuring efficient delivery to target sites. Si-
multaneously, it substantially inhibits the enzymatic activity that is 

Table 2.  The current literature concerning the chemosensitizing effect of RVT combined with conventional anticancer drugs in OC

Class Drug Effect
Ref-
er-
ence

Chemosensitization RVT,docetaxel and 
doxorubicin

Inhibition of P-glycoprotein and down-regulation of MDR1 gene 108

RVT, cisplatin and oxaliplatin Sensitized the OC cells to platinum-induced apoptosis 112

RVT and Cisplatin Enhanced cisplatin toxicity to OC cells 113

Sorafenib plus topotecan Improved progression-free survival 117

radiosensitization Radiotherapy and RVTa a. increases the apoptosis and autophagy of tumor cells 125

b. restored salivary amylase and SOD activity 126

c. reduced radiation-induced chromosome aberration frequencies 127

Associated with increased autophagy and apoptosis 128

Enhanced radiation efficacy was achieved through the re-
generative gene (REG) III expression pathway

129

The treatment delayed repair of radiation-induced DNA double-
strand breaks (DSBs) and prolonged G2/M phase arrest

130

aRVT can also be used as a radioprotective agent to reduce the adverse effects of radiation therapy, which in most people can cause dry mouth, mucositis, and dysphagia. a: 
Increase the apoptosis and autophagy of tumor cells, and reduce the volume and weight of tumors in vivo. b: RVT can reverse the radiation-induced decrease in salivary secretion 
and restore the activities of salivary amylase and SOD. c: RVT can reduce radiation-induced chromosome aberrations in mouse myeloma cells. The data in this table are all preclini-
cal data. MDR1, multidrug resistance protein 1; OC, ovarian cancer; RVT, resveratrol; SOD, superoxide dismutase.
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enhanced by radiation. By doing so, it effectively prevents the de-
velopment of drug resistance, which is a major challenge in cancer 
treatment. This breakthrough holds great promise for improving 
the efficacy of cancer therapies involving RVT and radiation.132 
RVT can potentially reverse multidrug resistance, and the thera-
peutic effect of anticancer chemotherapy drugs can be enhanced by 
using smaller concentrations.133 In particular, multidrug resistance 
can be reversed by using small-molecule compound inhibitors to 
target P-glycoprotein encoded by the MDR1 gene. P-glycoprotein 
is a member of the ATP-binding cassette transporter family and 
a multidrug resistance protein, and is the most common cause of 
multidrug resistance in tumors.134 RVT can inhibit the progression 
of glioblastoma cells and reverses chemoresistance by suppressing 
AKT and P-glycoprotein.135

The use of platinum drugs is limited by adverse effects, which 
can be severe. Drug resistance often occurs due to changes in dif-
ferent molecular aspects during treatment, resulting in treatment 
failure and tumor recurrence.136–138 The combined use of RVT 
and platinum drugs can increase the chemosensitivity of cancer 
cells. Research by Nessa et al. has shown that when cisplatin and 
oxaliplatin are used in combination with RVT, A2780 OC cells 
become sensitive to cisplatin and oxaliplatin by down-regulating 
NF-κB,139 and another study demonstrated a 3.1-fold increase in 
cisplatin cytotoxicity against A2780 cells after 48 hours of RVT 
pretreatment.140

The mechanisms of cell resistance are multifactorial and in-
volve complex interactions between intracellular changes and the 
tumor microenvironment.141 An emerging strategy to overcome re-
sistance is the combination of inhibitors targeted to multiple path-
ways. In particular, inhibition of several signaling pathways at the 
same time produces better antitumor activity than inhibition of any 
one signaling pathway alone.142,143 The multicenter, combined, 
randomized Phase 2 TRIAS trial compared the combination of the 
multiple kinase inhibitors sorafenib and topotecan as maintenance 
therapy for platinum-resistant or platinum-refractory OC, and the 
results showed that the multitarget strategy of sorafenib combined 
with topotecan produced a statistically and clinically significant 
improvement in progression-free survival for women with plati-
num-resistant OC.144 In particular, the progression-free survival 
of the sorafenib group was significantly increased compared with 
placebo (risk ratio, 0.60; 95% CI, 0.43–0.83; p = 0.0018).The 
various effects and molecular targets of RVT nanoformulations 
involved in OC are detailed in Table 3.93–95,97,98,113

Clinical trial of RVT on ovarian metabolic diseases
We searched PubMed, ScienceDirect, Google Scholar, Scopus, 
ISI Web of Science, ProQuest, Embase databases, and ClinicalTri-
als (https:// ClinicalTrials.gov/) from 2001 to 2025 using relevant 
keywords. Although there are substantial data on the use of RVT 
in clinical trials, we did not find any clinical trials in which RVT 
was directly used in OC. Researchers are more concerned about 
ovarian metabolic diseases.

This clinical evidence indicates that RVT plays a beneficial role 
in ovarian metabolic diseases. Judging from the clinical outcomes, 
these effects have multiple positive implications. For patients 
with primary ovarian insufficiency, clinical studies have found 
that RVT may help improve the endocrine function of the ova-
ries. By regulating hormone levels in the body, it can alleviate the 
hormonal imbalance caused by the decline of ovarian function to 
a certain extent.145 The role of RVT in preventing ovarian meta-
bolic diseases should not be ignored either. Clinical studies have 
shown that RVT can regulate metabolic parameters in patients with 
polycystic ovary syndrome. Long-term use of RVT has alleviated 
the symptoms of polycystic ovaries, reduced the number of small 
follicles in the ovaries, and gradually restored normal hormone 
levels.146–148

A summary of human studies on the effects of RVT on ovarian 
metabolic diseases is presented in Table 4.145–48

The potential use of RVT for treating OC is not only based on 
targeting a specific gene or protein, but also on the regulation of 
various aspects of cancer cell growth through synergistic effects 
on multiple targets. This potency comes from the fact that RVT 
has a structure comprising two benzene rings, which have a con-
jugate effect and can form strong hydrophobic action bonds with 
target proteins, and the hydroxyl groups of polyphenols can form 
hydrogen bonds with amino acid residues in the structural domains 
of proteins.19–21 Consequently, the cavity-specific combination of 
RVT and relevant proteins is harnessed to play a role in treating 
OC. A single chemical compound thus provides a multitarget and 
holistic disease treatment strategy. RVT can also play different 
roles at various stages in the occurrence and development of OC.14

Future perspective
In the treatment of OC, the use of multiple targets and pathways 
is suggested to provide a new strategy to overcome resistance that 

Table 3.  Various effects and molecular targets of RVT nanoformulations involved in OC

Drug class Type of nano-based RVT Effect Refer-
ence

Individual 
delivery

RVT—ZnO nanohybrid Mitochondrial membrane depolarization  
and ROS formation

93

RVT-loaded bovine serum albumin nanoparticles Apoptosis inducing factor (AIF) apoptosis  
pathway

94

RGD-conjugated RVT human serum albumin nanoparticles cell inhibition and tumor growth inhibition 95

Gold Nanoparticles Encapsulated RVT Inhibit ROS production, MDA generation,  
and GSH consumption

113

Co-delivery Polymeric micellar co-delivery of RVT and curcumin Apoptosis and ROS formation 97

Combinational polymeric micelles co-delivery of quercetin/ 
RVT and res-veratrol/curcumin

Induction of apoptosis 98

The data in this table are all preclinical data. GSH, glutathione; MDA, malondialdehyde; OC, ovarian cancer; RGD, arginine-glycine-aspartic acid; ROS, reactive oxygen species; RVT, 
resveratrol.
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may develop to conventional drugs used for treating OC. Presently, 
although the beneficial effect of RVT in treating OC has been ob-
served in a large number of in vitro studies and in some in vivo 
studies, there are still many challenges to address before RVT can 
be used in routine clinical practice. In particular, more clinical data 
are needed to prove the therapeutic potential of RVT, and more 
pharmacokinetic studies are required before the substance is mar-
keted as a prescription drug. In addition, studies on the standardi-
zation of extracts and dosage forms are needed. By changing the 
dosage form and the method of drug encapsulation, such as adding 
metal ions to form novel drugs, including nanomaterials of com-
plexes, liposomes, and the like, and using imaging techniques such 
as MRI to study effects and outcomes, it will be possible to estab-
lish whether and how RVT might be used to effectively treat OC.

Conclusions
RVT represents a compelling multitargeted therapeutic approach 
for OC, offering a distinct advantage over conventional single-
target agents. Its unique molecular architecture facilitates specific 
interactions with key regulatory proteins, enabling the simultaneous 
modulation of multiple signaling pathways implicated in cancer cell 
proliferation and disease progression. This integrative mechanism of 
action holds significant potential to address drug resistance, a major 
obstacle in the clinical management of OC. Although robust pre-
clinical evidence from both in vitro and in vivo models demonstrates 
RVT’s efficacy and therapeutic promise, substantial translational 
challenges remain. The successful advancement of RVT into clini-
cal practice will require comprehensive pharmacokinetic evaluation, 
standardized formulation development, and well-designed clinical 
trials to definitively establish its safety and therapeutic benefits. Fu-
ture research should prioritize optimizing delivery strategies through 
innovative formulations and leverage advanced imaging technolo-
gies to validate target engagement and treatment response, thereby 
accelerating the translation of promising preclinical findings into 
tangible clinical outcomes for patients with OC.
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